Scientific Publications

Jiawei Cao
Yiming Chen
Yuanhui Wang
Gang Cheng
Thierry Barrière
Download PDF

In this paper, a fractional viscoelastic model is proposed to describe the physical behaviour of polymeric material. The material parameters in the model are characterized by the experimental data obtained in the dynamical mechanical analysis. The proposed model is integrated into the fractional governing equation of polymethyl methacrylate (PMMA) above its glass transition temperature. The numerical algorithm based on the shifted Legendre polynomials is retained to solve the fractional governing equations in the time-domain. The accuracy and effectiveness of the algorithm are verified according to the mathematical examples. The advantage of this method is that Laplace transform and the inverse Laplace transform commonly used in fractional calculus are avoided. The dynamical response of the viscoelastic PMMA beam is determined with several loading conditions (uniformly distributed load and harmonic load). The effects of the loading condition and the temperature on the dynamic response of the beam are investigated in the results. The proposed approach shows great potentials for the high-precision calculation in solving the fractional equations in the science and engineering.

Jiawei Cao
Yiming Chen
Yuanhui Wang
Gang Cheng
Thierry Barrière
Lei Wang
Download PDF

An innovative numerical procedure for solving the viscoelastic column problem based on fractional rheological models, directly in the time domain, is investigated. Firstly, the governing equation is established according to the fractional constitutive relation. Secondly, the resulting equation is transformed into algebraic equation and solved by using the shifted Chebyshev wavelet function. Furthermore, the convergence analysis and the retained numerical benchmarks are carried out to validate the performance of the proposed method. A small value of the absolute error between numerical and accurate solution is obtained. Finally, the dynamic analysis of viscoelastic beam-column problems is investigated with different cross-section shape (circular and square) under various loading conditions (axial compressive force and harmonic load). The displacement, strain and stress of the viscoelastic column at different time and position are determined. The deformation and stress of the viscoelastic column of different materials under the same loading condition are compared. The results in the paper show the highly accuracy and efficiency of the proposed numerical algorithm in the dynamical stability analysis of the viscoelastic column.

Cundi Han
Yiming Chen
Da-Yan Liu
Driss Boutat
Download PDF

This paper applies a numerical method of polynomial function approximation to the numerical analysis of variable fractional order viscoelastic rotating beam. First, the governing equation of the viscoelastic rotating beam is established based on the variable fractional model of the viscoelastic material. Second, shifted Bernstein polynomials and Legendre polynomials are used as basis functions to approximate the governing equation and the original equation is converted to matrix product form. Based on the configuration method, the matrix equation is further transformed into algebraic equations and numerical solutions of the governing equation are obtained directly in the time domain. Finally, the efficiency of the proposed algorithm is proved by analyzing the numerical solutions of the displacement of rotating beam under different loads.

Solenne Bire
Sophie Casteret
Benoit Piegu
Linda Beauclair
Nathalie Moiré
Peter Arensbuger
Yves Bigot
:
Download PDF

Transposable elements are driving forces for establishing genetic innovations such as transcriptional regulatory networks in eukaryotic genomes. Here, we describe a silencer situated in the last 300 bp of the Mos1 transposase open reading frame (ORF) which functions in vertebrate and arthropod cells. Functional silencers are also found at similar locations within three other animal mariner elements, i.e. IS630-Tc1-mariner (ITm) DD34D elements, Himar1, Hsmar1 and Mcmar1. These silencers are able to impact eukaryotic promoters monitoring strong, moderate or low expression as well as those of mariner elements located upstream of the transposase ORF. We report that the silencing involves at least two transcription factors (TFs) that are conserved within animal species, NFAT-5 and Alx1. These cooperatively act with YY1 to trigger the silencing activity. Four other housekeeping transcription factors (TFs), neuron restrictive silencer factor (NRSF), GAGA factor (GAF) and GTGT factor (GTF), were also found to have binding sites within mariner silencers but their impact in modulating the silencer activity remains to be further specified. Interestingly, an NRSF binding site was found to overlap a 30 bp motif coding a highly conserved PHxxYSPDLAPxD peptide in mariner transposases. We also present experimental evidence that silencing is mainly achieved by co-opting the host Polycomb Repressive Complex 2 pathway. However, we observe that when PRC2 is impaired another host silencing pathway potentially takes over to maintain weak silencer activity. Mariner silencers harbour features of Polycomb Response Elements, which are probably a way for mariner elements to self-repress their transcription and mobility in somatic and germinal cells when the required TFs are expressed. At the evolutionary scale, mariner elements, through their exaptation, might have been a source of silencers playing a role in the chromatin configuration in eukaryotic genomes.

Peter Arensburger
Benoît Piegu
Yves Bigot
:
Download PDF

Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.

Benoît Piégu
Peter Arensburger
Linda Beauclair
Marie Chabault
Emilie Raynaud
Vincent Coustham
Sophie Brard
Sébastien Guizard
Thierry Burlot
Elisabeth Le Bihan-Duval
Yves Bigot
:
Download PDF

Efforts to elucidate the causes of biological differences between wild fowls and their domesticated relatives, the chicken, have to date mainly focused on the identification of single nucleotide mutations. Other types of genomic variations have however been demonstrated to be important in avian evolution and associated to variations in phenotype. They include several types of sequences duplicated in tandem that can vary in their repetition number. Here we report on genome size differences between the red jungle fowl and several domestic chicken breeds and selected lines. Sequences duplicated in tandem such as rDNA, telomere repeats, satellite DNA and segmental duplications were found to have been significantly re-shaped during domestication and subsequently by human-mediated selection. We discuss the extent to which changes in genome organization that occurred during domestication agree with the hypothesis that domesticated animal genomes have been shaped by evolutionary forces aiming to adapt them to anthropized environments.

Emanuele Calabrò
Salvatore Magazù
:
Download PDF

Background:

Previous studies have shown that exposure to high frequency electromagnetic fields induces alterations in simple organic systems such as proteins in bidistilled water solution.

Objective:

The aim of this study was to test the shielding action of sodium chloride in bidistilled water solution against exposure to a high frequency electromagnetic field, in order to evaluate if the addition of NaCl in proteins aqueous solution can be considered a valuable bioprotector against electromagnetic fields.

Method:

Samples of 250 μl of different hemoglobin aqueous solutions, in the absence or presence of sodium-chloride, were exposed for 3 hours to an electromagnetic field at 1750 MHz at a power density around 1 W/m2 emitted by an operational mobile phone. Fourier Transform Infrared Spectroscopy was used to study the effects of exposure on the secondary structure of hemoglobin also in the presence of sodium-chloride.

Results:

Spectral analysis evidenced that significant increase in intensity of the Amide I and II vibration bands in hemoglobin bidistilled water solution occurred after exposure to the electromagnetic field. This result can be due to the increase of dipole moment of the protein due to the alignment of α-helix towards the direction of the field. In contrast, no appreciable change was observed in hemoglobin in sodium-chloride water solution after exposure.

Conclusion:

This protective effect of sodium-chloride can be explained by the orientation of water molecules due to the strong electric field around each ion that reduces the possibility of rotation of the protein in response to an applied electromagnetic field.

P.-M. Zhang
M. Cariglia
C. Duval
M. Elbistan
G.W. Gibbons
P.A. Horvathy
:
Download PDF

The Eisenhart lift of a Paul trap used to store ions in molecular physics is a linearly polarized periodic gravitational wave. A modified version of Dehmelt’s Penning trap is, in turn, related to circularly polarized periodic gravitational waves, sought in inflationary models. Similar equations also govern the Lagrange points in celestial mechanics. The explanation is provided by anisotropic oscillators.

Stephen Foster
Karin Anderson
Jérôme Casas
:
:
Download PDF

Most species of moths use a female-produced volatile sex pheromone, typically produced via de novo fatty acid synthesis in a specialized gland, for communication among mates. While de novo biosynthesis of pheromone (DNP) is rapid, suggesting transient precursor acids, substantial amounts of pheromone precursor (and other) acids are stored, predominantly in triacylglycerols in the pheromone gland. Whether these stored acids are converted to pheromone later or not has been the subject of some debate. Using a tracer/tracee approach, in which we fed female Heliothis virescens U-13C-glucose, we were able to distinguish two pools of pheromone, in which precursors were temporally separated (after and before feeding on labeled glucose): DNP synthesized from a mixed tracer/tracee acetyl CoA pool after feeding, and pheromone made from precursor acids primarily synthesized before feeding, which we call recycled precursor fat pheromone (RPP). DNP titer varied from high (during scotophase) to low (photophase) and with presence/absence of pheromone biosynthesis activating neuropeptide (PBAN), in accord with native pheromone titer previously observed. By contrast, RPP was constant throughout the photoperiod and did not change with PBAN presence/absence. The amount of RPP (6.3–10.3 ng/female) was typically much lower than that of DNP, especially during the scotophase (peak DNP, 105 ng/female). We propose an integral role for stored fats in pheromone biosynthesis, in which they are hydrolyzed and re-esterified throughout the photoperiod, with a small proportion of liberated precursor acyl CoAs being converted to pheromone. During the sexually active period, release of PBAN results in increased flux of glucose (from trehalose) and hydrolyzed acids entering the mitochondria, producing acetyl CoA precursor for de novo fat and pheromone biosynthesis.

David Giron
Géraldine Dubreuil
Alison Bennett
Franck Dedeine
Marcel Dicke
Lee A. Dyer
Matthias Erb
Marion O. Harris
Elisabeth Huguet
Isgouhi Kaloshian
Atsushi Kawakita
Carlos Lopez-Vaamonde
Todd M. Palmer
Theodora Petanidou
Michael Poulsen
Aurélien Salle
Jean-Christophe Simon
John S. Terblanche
Denis Thiery
Noah K. Whiteman
H. Arthur Woods
Sylvain Pincebourde
:
Download PDF

There is tremendous diversity of interactions between plants and other species. These relationships range from antagonism to mutualism. Interactions of plants with members of their ecological community can lead to a profound metabolic reconfiguration of the plants’ physiology. This reconfiguration can favour beneficial organisms and deter antagonists like pathogens or herbivores. Determining the cellular and molecular dialogue between plants, microbes, and insects, and its ecological and evolutionary implications is important for understanding the options for each partner to adopt an adaptive response to its biotic environment. Moving forward, understanding how such ecological interactions are shaped by environmental change and how we potentially mitigate deleterious effects will be increasingly important. The development of integrative multidisciplinary approaches may provide new solutions to the major ecological and societal issues ahead of us. The rapid evolution of technology provides valuable tools and opens up novel ways to test hypotheses that were previously unanswerable, but requires that scientists master these tools, understand potential ethical problems flowing from their implementation, and train new generations of biologists with diverse technical skills. Here, we provide brief perspectives and discuss future promise and challenges for research on insect–plant interactions building on the 16th International Symposium on Insect–Plant interactions (SIP) meeting that was held in Tours, France (2–6 July 2017). Talks, posters, and discussions are distilled into key research areas in insect–plant interactions, highlighting the current state of the field and major challenges, and future directions for both applied and basic research.