Behavior, sensory reception and genomics in a vector insect

LE STUDIUM Multidisciplinary Journal, 2019, 3, 57-63

Marcelo G. Lorenzo1,2, Claudio R. Lazzari1

 

1Institute de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS-Université de Tours. France.

2Instituto René Rachou, Fundação Oswaldo Cruz. Brazil.

Abstract

Insects vectoring human disease, like mosquitoes and kissing-bugs, endure a high risk of predation related to their life histories. Therefore, insect vectors are expected to have a finely adapted behavioral repertoire to survive in the context of their close association to vertebrate hosts. The study of molecular bases of their perception of the environment and their behavior, is relevant to understand the evolution of hematophagy as well as to promote the discovery of new targets of opportunity for developing rational control methods. Our long-lasting scientific collaboration has been dedicated to these tasks and the support of the Le Studium Foundation has been instrumental to further promote its development. We report here a series of studies that have been completed during the stay in the region Centre. Kissing-bugs are nocturnal insects that spend daylight hours hidden inside narrow shelters. Therefore, comprehending shelter choice, as well as the cues that trigger foraging decisions seems essential in order to predict bug distribution and activity precisely. We have focussed on Rhodnius prolixus, one of the two main vectors of Chagas disease in the Americas, and the way they use shelters. As an outcome of these investigations, three scientific papers have been published to report factors affecting shelter choice by bugs, the lack of a chemical marking system in bugs of this genus and the key role that host odours play in promoting bug foraging outside shelters. In parallel, we have described what seem to be diverging locomotory profiles in these bugs suggesting that foraging strategies can vary from “sitter” to “rover” individuals. As a third topic, we have developed a synthetic blend of compounds imitating the effects of the sexual pheromone attracting males to R. prolixus females. In a fourth topic we have uncovered what appears to be a local modulatory system present in the antennae of insects including the synthesis of transcripts for neuropeptides, GPCRs and nuclear receptors. Finally, we have revised the molecular bases of sensory processes in triatomine bugs vectors of Chagas disease in a review publication.

Keywords

Behavior
Sensory
Plasticity
Receptor
Vector Insect
Triatomines
Published by

Le STUDIUM Multidisciplinary Journal